SEMANTIC SHIFT IN SOCIAL NETWORKS
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the meaning of a word does not hold for a word simpliciter,

but for a word In a particular community
(Clark, 1996)

Question: How do the socio-structural
characteristics of communities affect

how much lexical semantic change they

expeirence?

MEASURING CHANGE

To model semantic change, we use a
diachronic skip-gram model <1 ¢
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Problem: Navie cosine change is biased
towards words that appear in more variable ) A (W) — T
context distributions, regardless of how Al (w) =
much the context changes across time Sc,w \/ 1+1/n

Solution: We train multiple skip-gram models on pseudo-diachronic corpora.
Rectified cosine change is the number of standard deviations naive cosine change is
from the mean of the "cosine change" for the word in the pseudo-diachronic models.

RESULTS e E——

We did not find a significant effect of any of
the community-level features on their own,
but we did find a significant three-way
iInteraction between clustering, stability,
and size.

. DATA

® 45 randomly selected communities from Reddit

e For each community: comments from 2015 and
2017 (avg. 158k per community)

e Two larger "generic" Reddit corpora from the
same time periods (54M comments each)

® Normalized, Lemmatized, lower-cased, and

U

tokenized

N

)

COMMUNITY FEATURES
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« Mean posts by active users
» Size (number of active users, 2015)
- Stability (active users Jaccard index)

» Clustering coefficient
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For sparse communities (with low clustering s gommunity
coefficients) stability is positively correlate - 1
with rectified change (regardless of = '
community size). E >é 0.01
= 1.02

When there is more clustering, larger
communities no longer exhibit the positive
relationship betweeen stability and semantic
change.
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Mean posts by active users (2015)
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Clustering coefficient (2015)

REFERENCES

Clustering coefficient
measures the cohesiveness
of the community's social
network.

Network nodes are
individual users and the
edges between users are
defined by how many
interactions the users have
with each other in the
comments.
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